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A unified heuristic model of fluid turbulence is proposed which supplements the 
basic equations of motion and continuity so as to define determinate solutions at high 
Reynolds number under a wide range of conditions. A single set of equations applies 
to all cases. Only the boundary conditions change for each application. 

The Reynolds stresses are related to the mean flow heuristically, through an eddy 
viscosity. This also involves the turbulent energy, which is analyzed with the aid of 
empirical expressions for dissipation and diffusion. A characteristic local length scale 
is introduced, baaed on a generalization of von Karma& mixing length. 

The model is illustrated by application to a channel and a jet. Agreement with expcri- 
ment is satisfactory. 

INTRODUCTION 

A major obstacle to progress in the numerical integration of the Navier-Stokes 
equations for fluid flow problems of technical importance has been the impracti- 
cality of carrying out computations at high Reynolds number. In finite-difference 
calculations, for example, it may be shown that errors in the finite-difference 
representation of the advection terms of the momentum equation will possess a 
diffusion-like character and, as Reynolds number is increased, will inevitably over- 
power the true viscous terms and dominate the calculation. In fact, in some such 
schemes, the false momentum diffusion may actually become negative, causing 
computational instability. 

Physically, the significance of this restriction is that the computational space net 
must be fine enough to resolve the smallest turbulent wavelengths present, while 
at the same time sufficiently extensive to encompass the large scale mean flow. The 
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disparity between these two scales of size increases, of course, with increasing 
Reynolds number. Furthermore, even if the mean flow is known, for instance, to 
be steady and plane or axi-symmetric, the calculations must be three-dimensional 
and unsteady, since the associated turbulence is intrinsically three-dimensional and 
unsteady. Such a numerical approach to high Reynolds number flows is clearly 
out of the question, for all practical purposes. 

An attractive alternative to this melancholy situation is to attempt to model the 
turbulent effects (Reynolds stresses) using approximate methods. Such schemes are 
not deducible from the equations of motion themselves, but must be formulated 
heuristically, using physical intuition, dimensional analysis, and the like. The test 
of validity of such models is simply the extent to which they reproduce experimen- 
tal facts. Such an approach, of course, is not appealing to the purist, but seems to 
offer, at this time, the only feasible method of calculating flows of practical im- 
portance. 

In incompressible fluid flow the equations of mass and momentum conservation, 
along with the boundary conditions, su&ce in principle to establish completely the 
entire fluid motion. In the flow happens to be turbulent, however, the actual 
detailed motion becomes so complex that, although it is theoretically determinate, 
its actual calculation would impose an overwhelming computational burden. 
Furthermore, for many problems of technical importance, the results of interest 
are certain average properties of the flow, and the large mass of additional detailed 
information available is often not required, or even desired. 

To circumvent this difbculty, the usual procedure is to average the equations of 
momentum and continuity. This results in an enormous simplification, but also, 
regrettably, involves a significant and irretrievable loss of essential information. 
Consequently, owing to the presence of the unknown Reynolds stresses created by 
the averaging process, the averaged equations of momentum and continuity do not 
in themselves comprise a determinate set. 

In order to define a determinate solution, additional relations are required to Gx 
the unknown Reynolds stresses. Unfortunately, these supplementary relations 
cannot be established from the original equations by any purely deductive process. 
For this purpose, supplementary empirical hypotheses are an unavoidable necessi- 
ty. From another viewpoint, it may be stated that the averaged equations of motion 
show the effect of the Reynolds stresses on the mean flow. However, the reciprocal 
effect of the mean flow upon the Reynolds stresses is lost in the averaging process. 
Hence some adequate hypothesis must be found for representing this relation, at 
least approximately. 

For this purpose, an heuristic approach which seems plausible is to postulate a 
relation between the Reynolds stresses and the mean flow which is analogous to 
the relation which is known to govern the viscous stresses. The analogue of the 
ordinary molecular viscosity is the so-called eddy kinematic viscosity. The problem 
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becomes, therefore, to determine empirically the general law which governs this 
mean effective eddy viscosity at every space-time point in the flow field. 

A number of models have been advanced over the years for obtaining the eddy 
viscosity distributions in various flows of technical importance. It is a striking fact 
that, despite the relative simplicity of the notions behind these models, they do 
indeed reproduce experimental data remarkably well. Unfortunately, each of these 
empirical theories has its own particular formulation and set of empirical constants, 
and there is no clear connection between the separate cases. Thus, there are more 
or less separate theories for turbulent flows in pipes, in ducts, in two and three 
dimensional boundary layers, in plane and axi-symmetric jets and wakes, and so on. 

In order to formulate a more general scheme for approximating the eddy 
viscosity distribution in an arbitrary flow, it appears necessary to consider more 
parameters than are usually available from experimental results. That is, the above- 
mentioned models all possess one unifying characteristic-they depend for their 
formulation exclusively on quantities determinable directly from the mean flow. It 
seems intuitively clear, however, that a truly adequate model for turbulent flows 
should depend both on the mean flow and on the character of the accompanying 
turbulence. In particular, it appears reasonable that, at the very least, the local 
kinetic energy of the turbulent fluctuations should somehow be involved. Thus, it 
becomes necessary to find the space-time distribution of the turbulent energy. 
Fortunately, the governing energy equation can be deduced rigorously from the 
original equations of motion. However, the energy equation itself introduces two 
additional unknowns which can only be approximated in the same heuristic and 
empirical fashion as was the eddy viscosity. The additional unknowns are the rate 
of dissipation of turbulent energy into heat, and the rate of turbulent diffusion of 
energy. 

Theory and experiment both show that the eddy viscosity, and the dissipation 
and diffusion functions as well, depend not only on the turbulent energy itself, but 
also on a local length scale parameter which can be associated with each space 
time point in the flow field. Von Karman was perhaps the first to point out how a 
physically meaningful characteristic length can be defined in terms of local space 
derivatives of the mean velocity field at any point in the flow. In the present paper, 
the original approach of von Karman is further developed and refined. It now takes 
into account not only the velocity derivatives at the designated point itself, but also 
the values in the general vicinity of the point. 

By employing dimensional analysis, and by applying the available experimental 
data, three empirical expressions are finally obtained which determine to a reason- 
able approximation the eddy viscosity, the heat dissipation, and the turbulent 
diffusion, respectively. These expressions also involve the turbulent energy, the 
local length parameter, and the distance to the nearest fixed wall (if any). Of course, 
these empirical expressions are amenable to further investigation and development. 
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In this way a single consistent and determinate set of equations is established which 
applies in principle to any incompressible turbulent flow field. Only the boundary 
conditions differ for each specific application, 

As an interesting historical note, it seems worthwhile to mention that the 
heuristic model developed in this paper resembles in some respects the approach 
first suggested by Prandtl [l] in 1945. It also has some similarities to, and some 
differences from, the more recent work of Harlow, Nakayama and Hirt ([2], [3]). 

DEVELOPMENT OF THE MODEL 

The equations of motion for an incompressible, viscous fluid may be written: 

aUj’laXj = 0 (continuity) (1) 
a@ 

4 (U,‘) + g  (U,‘U,‘) = v azui’ - - 
axj axj axi (momentum) (2) 

i 

where U,‘, U,‘, U,’ are velocity components in the directions x1, x, , x,; v is 
kinematic viscosity, and @’ is kinematic pressure (pressure/density). The velocity 
components and the pressure may be separated into mean and fluctuating parts: 

These may be inserted into the equations of motion, and the results ensemble- 
averaged. Further manipulation leads to three equations of interest: 

-& (Uj) = 0 (mean flow continuity) (3) 
3 

~o,+~oUj,=~[v(~+~)-;;(;;;]-~ 
3 

imean &w momentum) (4) 

--L+- Va24. au, 31 
( I( 

au. auk 
2 ax, ax, axk -1 aXj (5) 

a -- 
ax, 'k [ ( y- + v)] 

(turbulent energy). 
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The terms on the right of the energy equation (5) represent, respectively, turbulent 
energy production corresponding to the work done by the mean flow against the 
Reynolds stresses, dissipation of turbulent energy to heat, turbulent diffusion of 
energy, and molecular diffusion. For problems at high Reynolds number, the last 
term is vanishingly small; it will be hereafter ignored. 

We postulate that the Reynolds stresses can be adequately related to the strain 
rates of the mean flow through the law: 

- 
-upj = - &&&jj + +KJ,lax, + aU,/ax,), (6) 

where & = 0 for i # j, and = 1 for i * j; E is the so-called eddy kinematic 
viscosity. If we drop the last term in Eq. (5) and insert postulate (6), we obtain: 

g (Us) + & (UJj) = & [e + 4 (2 + $$)I - g j 5 
(mean flow momentum) (7) 

(8) 

where 
(turbulent energy), 

rjk = (auj/ax, + auk/ax,) (mean flow strain rate) (9) 

E = z.12 (mean turbulent kinetic energy) (11) 

P=@+gE (total pressure). (12) 

Now consider the last term of Eq. (8). It is useful for purposes of discussion to 
break this into its two constitutent terms: 

uk 

The first of these terms clearly represents the net advective transport of the 
fluctuating turbulent kinetic energy ujUj/2 by the action of the turbulent velocity 
fluctuations uk . Clearly, the turbulent kinetic energy is both a scalar and an exten- 
sive property. It may be regarded as something which is physically transported 
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along with the element of fluid mass. In this respect it is quite analogous to other 
extensive properties such as heat or salinity. It is customary to represent such net 
turbulent transport by an appropriate empirical diffusion coefficient, as we have 
already done for momentum with the kinematic eddy viscosity. Hence we write 

uk (14) 

On the other hand, the pressure-velocity correlation term cp) is in a somewhat 
different category owing to the fact that the pressure y is an intensive property. It is 
not an extensive property which can be regarded as being transported along with 
the fluid mass. We note, however, that Q is a dependent variable. This means that 
whenever the spatial distribution of the velocity fluctuations uk is specified, the 
corresponding spatial distribution of v is likewise fixed. Hence, looking at the 
matter statistically, we can say that ‘p is correlated in some fashion with 2(k . In fact, 
taking dimensional considerations into account, we can improve this statement and 
say that v is statistically correlated with (ujui/2). For example, in the limiting case 
of an inviscid fluid, Bernoulli’s equation informs us that regions of higher than 
average kinetic energy will tend to be regions of lower than average pressure, and 
vice versa. Consequently, we are justified in writing the pressure term in the ana- 
logous form 

zq = -8(aE/aXk) (15) 

so that the overall effect becomes 

uk(ujuj/2 + (p) = -(E' + 6") @/a& .  

Normally, E’ is a positive quantity. However, because of the generally negative 
correlation between pressure and kinetic energy, we expect e” to be usually negative 
and smaller in magnitude than B’. Hence (E’ + E”) should be positive but smaller 
than 4’ alone. Moreover, B’ and 2” are both of the same dimension as the kinematic 
eddy viscosity 4. For these reasons, it is advantageous to write 

(4’ + 8) = ye, (17) 

where y is a dimensionless coefficient roughly of order unity. Hence, we finally 
write: 

uk(ujuj/2 + p) = -&aE/a&) (18) 

The kinematic eddy viscosity E itself, of course, remains to be determined. 
Unfortunately, B is not a simple property of the fluid, but is rather a complex 
property of the turbulent flow field and its interaction with the mean flow. In order 
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to formulate a plausible model for e, it is Grst necessary to consider the establish- 
ment of scales of size appropriate to the description of the mean flow and/or the 
turbulent field. 

It is possible formally to establish an appropriate scale of turbulence (or macro- 
scale) at a space-time point (2, t) in terms of the statistical properties of the tur- 
bulence in the vicinity of the point. Let the correlation tensor at the point be 
de&d as follows: 

The first invariant of this tensor is: 

Now the desired characteristic length h* may be deGned as follows: 

(20) 

where du’ = dx,’ dx*’ dw,’ represents an infinitesimal volume element at the 
variable point x’ + AR, and 

The integrals in (21) extend over all space. Of course, these integrals are finite, 
despite the infinite domains of integration, because of the rapid decay in the correla- 
tion function at large separations. 

The numerator of Eq. (21) represents the second moment of the correlation 
function. It is therefore analogous to a moment of inertia. Also, A*’ is analogous to 
a variance in probability theory. It is well-known that such second moments attain 
their minimum values when evaluated with respect to the centroidal point of the 
distribution in question. In the present instance, the correlation function is sym- 
metrical with centroid at dx’ = 0, and hence A*’ represents the minimum possible 
varianec of the correlation function. These properties make h* a particularly 
appropriate measure of the length scale of turbulence in the vicinity of the point 
(% 0. 

As has been seen, it is convenient to resolve turbulent fluid flow into two dis- 
tinctly complementary aspects which we then refer to as the mearr fiw and the 
turbuZent@tuations. While such a distinction is useful for conceptual and com- 
putational purposes, it should not be forgotten that these two aspects are inextrica- 
bly coupled within a single unitled process. This fact provides a useful hint in con- 
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nection with the problem of formulating appropriate auxiliary hypotheses to sup- 
plement the averaged equations of motion. Such hypotheses will naturally be 
formulated in terms of the fundamental physical parameters which characterize 
the overall turbulence in the vicinity of the point (2, t). Among these quantities 
are the turbulent kinetic energy E(x’, t) and the macroscale of turbulence h*(jt, t). 

Of course, in most problems of practical importance, interest centers chiefly on 
the mean flow field. More often than not, therefore, we do not have available the 
data which would be needed to establish such a largely unseen characteristic of the 
turbulence as the macroscale h*. Consequently, it is of doubtful utility to formulate 
any heuristic theory of turbulence directly in terms of such quantities. Thus, we 
must at this stage of our knowledge replace the fundamental macroscale h* by 
another quantity which is more or less equivalent, but which is far more amenable 
to observation and calculation. 

Fortunately, for this purpose we can take advantage of the intimate connection 
between the local turbulence field and the local mean flow field noted above. 
Presumably because of this connection the local length scale must somehow be 
reflected in the local characteristics of the mean flow, and must therefore be dedu- 
cible from the mean flow. 

While the exact nature of this relationship between the macroscale and the mean 
flow is far from clear, we can legitimately infer that the relationship is inherently 
somewhat local in character. This follows from a fact universally revealed by all 
observed correlation data: the correlation curves always show a rapid decrease in 
correlation with increasing separation. Moreover, the correlations become negli- 
gible at separations larger than about two or three multiples of A*. 

Consequently, we hypothesize that a quantity more or less equivalent to the true 
macroscale h* can be defined and computed in terms of the observable characteris- 
tics of the local mean flow. Let us call this quantity the apparent macroscale and 
designate it by the symbol h. It follows from the foregoing discussion that the 
definition of h in the vicinity of an arbitrary point (3, t) should depend only on the 
mean flow conditions in a finite region surrounding that point. This principle is 
more realistic than any method which seeks to define this macroscale in terms of 
mean flow quantities only at (2, t) itself. On the other hand, it avoids the opposite 
extreme which would hold that h is somehow dependent on all points in the flow 
field, no matter how remote. Naturally, the definition of A should emphasize mean 
flow conditions in the immediate neighborhood of the point (3, t), should give 
progressively less weight to conditions farther away, and should finally neglect 
mean flow effects at points sufficiently remote. This requirement suggests the 
general idea of defining h in terms of appropriate weighted averages of certain 
mean flow quantities. 

The preferred choice of weighting function for this purpose would be the cor- 
relation function & itself, if it were known. Of course, if Rii were known, it could 
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be used to find the true macroscale A* directly, and there would be no need for a 
weighting function. However, it is not known, and we are therefore obliged to use 
an heuristic substitute, preferably a function which resembles the correlation func- 
tion to a certain extent. Fortunately, great accuracy is not required in this regard, 
for weighted averages tend to be relatively insensitive to minor variations in the 
form of weighting function used. 

In view of these considerations, we choose the Gaussian curve as an appropriate 
form of heuristic weighting function. It expresses the general trends of correlation 
in a suitable manner, and has various convenient mathematical properties as well. 
Consequently, we finally write the weighting functions in normalized form as 
follows: 

exp - - 
( 

Ax’. Ax’ 

w(jt, AR) = 
P(Z) 1 

s 
Ax’. A5 

1 

du, * (22) 
exp - - 

all space ( X2(?) 

We have been considering any arbitrary and general turbulent flow field of 
which the mean flow may be either steady or unsteady. With every point of the 
field there is associated the parameter A which expresses a length scale characteris- 
tic of the mean flow pattern in the vicinity of the point. Our problem is to devise a 
suitable explicit definition of this parameter in a way which meets various essential 
requirements. Some of these have already been discussed. There are additional 
requirements as well, among which are the following: 

(a) h must be a true scalar, and therefore invariant with respect to any 
rotation, reflection, translation, or acceleration of the reference axes. 

(b) A should also be everywhere continuous, finite and positive (except 
possibly in certain singular regions, such as at a solid boundary). 

(c) If feasible, the mean flow quantity A2 should preferably be related to the 
correlation quantity A** such that the ratio of the two is close to unity, or at least 
remains as nearly constant as possible. 

These requirements can be satisfied as follows. Let the strain rate tensor be 
defined as: 

(see Eq. 9) (23) 

Note that for the incompressible case which we are considering, the first invariant 
vanishes : 

rii = 2(au,lax*) = 0 by continuity. (24) 

Therefore, there is no net dilatation, and the rij represent purely distortional 
effects. 

5W5/3-3 



392 GAWAlN AND PRITCHETT 

We now define a generalized strain rate Q, and a generalized strain rate gradient 
9’ as follows: 

ilP = ?J,r** (see Eiq. 10) (25) 

P = (aA2/ax,)(aQ/axJ. (26) 

From these definitions, the following useful quantity can be obtained: 

(my = t(acP/axJo(LP/ax*). (27) 

It can be shown that while U, and T, depend on the orientation of the reference 
axes, the quantity LP is invariant in this regard. The same is true of (GQ’)z. Hence 
ha can be conveniently defined in terms of these variables. 

In accordance with the above notions, we therefore define as follows: 

where 
P(Z) = zyx’)/J*(x), @9 

(29) 

W’ = 1.11 spsce 
w(ii, x”)(myjt’))* du (30) 

and 

exp - (2 - x”) * (2 - n’) 

w(jE, 2’) = 
( WI 

I 
(52 - x”) - (3 - x”) (31) 

811 8p8Ce WI 

It should be noted that some difficulty will be experienced in calculating the h 
distribution directly from an arbitrary velocity distribution, since h appears on 
both sides of the deIlning equation. Methods used to approximate h will be dis- 
cussed later. 

Having defined an appropriate macroscale, we now postulate a formulation for 
the eddy viscosity E using physical and dimensional reasoning as follows: 

E 
h42E = OL’ (32) 

The dimensionless coefficient OL is a slowly varying universal function not pre- 
dictable from theory, but determinable from experimental data. As such it is in the 
same class as the function y mentioned earlier in connection with turbulent 
diffusion (see Eq. 16). Clearly, of course, the usefulness of formulation (32) depends 
on the extent to which it reproduces observable data, that is, the extent to which (r 
is a predictable and well-behaved function. 
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Now consider the dissipation of turbulent energy into heat (second term on the 
right of Eq. 8). Dimensional considerations suggest that this term can be expressed 
to good advantage in the form 

This expression amounts to a definition of the so-called dissipation length X, 
which is a length characteristic of the energy dissipating wave lengths of the tur- 
bulent spectrum. This form of expression would be fairly convenient if the dissipa- 
tion length Xn happened to be related to the macroscale A in some fairly simple and 
invariant way. Unfortunately, this does not seem to be the case. Experimental 
studies such as those by Laufer clearly suggest that at sufficiently high Reynolds 
number the heat dissipation effects tend to become independent of Reynolds 
number. This implies that, contrary to Eq. (33), the optimal form of expression for 
& is one which does not contain viscosity v explicitly. This curious fact can be 
given a reasonable interpretation by considering turbulent energy processes from a 
spectral point of view. It is well-known that the work input occurs mainly at the 
long wave length end of the spectrum, and that dissipation to heat takes place at 
much shorter wave lengths. At high Reynolds numbers, there is a broad wave 
length range in between, the so-called inertial range, for which both work input 
and heat dissipation are negligible. Each wave length within this inertial range 
simply receives energy from longer wave length components and transmits this 
energy to shorter wave length components. It would appear that the rate of trans- 
mission of energy through the spectrum is largely controlled by this process in the 
inertial range, rather than by the viscous dissipation process itself. Apparently the 
viscous dissipation rate easily adjusts itself as may be required to dissipate all the 
energy coming through the inertial range. Since the viscous process is not rate con- 
trolling, the effect of viscosity tends to drop out of the experimental picture. 

These notions, combined with a considerable amount of numerical experimen- 
tation, suggest the following formulation for the dissipation length. Consider two 
lengths L, and L, defined as follows: 

Lz = v2/2E 04 

Lzs = 2EjJ, (35) 

where J is defined in Eq. (30). We now form the relation 

-hL2thDa = p (36) 

and postulate that /I is another slowly varying universal function of the same sort 
as OL and y. The energy dissipation term now becomes 

gH = fi(2E)‘” J1ls (37) 



394 GAWAIN AND PRITCHETT 

which shows the required independence of molecular kinematic viscosity. Actually, 
the above formulation does seem to match experimental data fairly well. It should 
be pointed out, however, that experimental information concerning this term is 
very sparse, and much more data is needed in this regard. 

The rate of turbulent energy dissipation in pipe flow at a Reynolds number of 
500,000 has been measured by Laufer [4]. His results are shown in Fig. 1. Note 
that Laufer regarded his measured dissipation data as too low and attempted to 
estimate better values as indicated. The energy dissipation calculated from Eq. (37) 
using Laufer’s measured energy distribution and assuming the Nikuradse velocity 
profile is shown as the solid line in Fig. 1. 

Thus, the complete model has now replaced the original momentum and energy 
equations (4) and (5) with heuristic substitutes 

$ (vi) + & (uiuj) = & [tv + aA a) (2 + s)] - $ 
3 

(mean flow momentum) (38) 

aE 
at + & ( UjE) = &I d%P IR2 - ,6(2E)“’ J”’ 

3 
+ & (VA d% g) 

(tuibulent energy).’ (39) 

0.l 0.2 0.3 0.4 a5 0.6 0.7 a0 C 
Rarotive RDdius 

(61 

FIG. 1. Turbulent energy dissipation rate in a pipe. 
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In practice, the usefulness of the above formulation hinges on whether the 
dimensionless coefficients (Y, /3, and y behave in a reasonably stable and simple 
manner. Our present indications are that this is indeed so. On the basis of work 
done so far, the following expressions seem to provide satisfactory agreement with 
the available data: 

OL = 0.065 11 + exp [- K - 1,‘1] 

$ = 3.7 ]l + exp [- (X - l)‘]/ 

y = 1.4 - 0.4 exp [- (X - l)p]. (42) 

In these expressions, y is the distance to the nearest lixed boundary. As the 
boundary is approached y approaches zero, but it turns out that under these con- 
ditions the length scale parameter X also approaches zero simultaneously, so that 
the ratio (r/h) remains finite. In fact, it happens that at the wall itself, (r/h) equals 
unity (not zero). In any case, it is stipulated in connection with the above formulae 
that (y/h) shall be arbitrarily assigned a lower limit of unity. Thus, the maximum 
possible range of variation of the above three functions is not large. On the other 
hand, far from any fixed boundary, or in the absence of fixed boundaries, we set 
y = cc whereupon CY, j?, and y reduce to three simple constants. 

As was mentioned earlier, the macroscale h and the quantity J, although in 
principle determined by Eq. (28) through (31), are in practice difficult to calculate 
in that form. In order to make useful calculations, it is necessary to resort to an 
i&ration process such as the following. Let the (n + I)-th approximation to h be 
defined as: 

x:,(3 = 4t+dWJ,e+d@ (43) 
where 

The weighting function w, is defined as follows. Let 

Then 

w,(x’, x”) = 
Wn(Z, x”) 

fall space K(% 3’) dv’ ’ 
(47) 
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We now define (in principle) 

(48) 

Advantage should be taken, of course, of any knowledge concerning the flow to 
hasten the convergence of the Xn’s. In particular, if the flow is self-similar, such as 
the flow in a pipe, duct, or boundary layer, or the far downstream region of a 
turbulent jet or wake, calculations need only be performed on a single representa- 
tive cross-section of the flow, and the results resealed according to the appropriate 
nondimensionalizing parameters. 

As an initial guess to start the iteration process, we take h, = 00 everywhere. 
Then in computing A1 , we find that the weighting function W,, is equal to unity 
everywhere, and so we obtain simply 

a constant independent of position. Thus, h, is the first nonconstant approximation 
to h that we obtain. 

Numerical experiments with various flow fields have shown that, in general, the 
convergence of the h,‘s is extremely rapid. This is illustrated in Table I which shows 

TABLE I 

Convergence of Macroscale Distribution in a Two-Dimensional Channel 
with Parabolic (Laminar) Velocity Prow 

n=O n=l ?I=2 n=3 Pl=20 

0.0 W 0.775 0.695 0.674 0.664 
0.2 W 0.775 0.706 0.693 0.689 
0.4 W 0.775 0.731 0.727 0.727 
0.6 W 0.775 0.758 0.758 0.758 
0.8 W 0.775 0.782 0.781 0.781 
1.0 W 0.775 0.802 0.800 0.800 

a 2b = channel width y = distance from centerfine. 

successive numerical approximations to the /\ distribution in laminar flow in a two- 
dimensional channel. Consequently, for the purposes of the calculations presented 
in this paper, the approximation was made: 

A(S) fw A#). (50) 

Some improvement could possibly be gained by continuing to higher approxima- 
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tions, but in view of the gross simplifications already inherent in the model as a 
whole, the authors feel that such refinement is not warranted. Moreover, absolute 
accuracy in this regard is not essential. It is necessary, however, that the chosen 
order of approximation be adhered to consistently. It is also important to adjust the 
initially undetermined numerical constants of the model so that the chosen order 
of approximation gives satisfactory agreement with experimental data. The signifi- 
cant numerical constants are those that occur in the heuristic expressions for the 
quantities cy, g, and y. 

NUMERICAL RESULTS 

Two widely different cases of turbulent flow have so far been calculated explicitly 
using the heuristic model described in the preceeding section. These are the flow 
in a two-dimensional channel (dominated by boundary layer effects) and in the 
far-downstream region of an axisymmetric jet (a case of free turbulent flow). Both 
cases are, of course, steady flows. The model may also be applied to unsteady 
flows, but the purpose of these calculations was to ascertain the agreement (if any) 
between calculated results and experimental facts, and there is no adequate avail- 
able experimental data on unsteady turbulent flows. 

In principle, the heuristic model may be employed in an unsteady sense and the 
calculation allowed to proceed until a steady state is reached. In practice, however, 
this is an expensive approach in terms of computation. The method used in the 
present calculations was as follows: 

(1) The velocity distribution was taken from experimental results. Using the 
momentum equation, it was then possible to calculate the Reynolds stress distribu- 
tion required to maintain the observed velocity distribution. (Experimental mea- 
sures of the Reynolds stresses are also available-a comparison of the two yields 
an estimate of the reliability of the experimental data.) 

(2) Following the steps summarized in Eqs. (43) through (50), the macroscale 
(A) and J distributions were calculated, assuming the experimental velocity distribu- 
tion. 

(3) The turbulent energy (E) at equilibrium was then computed numerically 
using Eq. (39), by dropping the unsteady term and imposing appropriate boundary 
conditions. 

(4) Using the computed energy distribution, the computed macroscale 
distribution and the observed velocity field, a Reynolds stress distribution was then 
calculated (see Eqs. 6 and 32). 

(5) The Reynolds stress disaibution thus computed from the heuristic model 
was compared with the re@red distribution found from the momentum analysis in 
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step (1) above. The energy distribution calculated in step (3) was also compared 
with experimental measurements. 

Consider the steady, incompressible turbulent flow through a two-dimensional 
channel of uniform height 2b as shown in Fig. 2. Let y be the distance from the 

TYPICAL CROSS - SECTKN 

FIG. 2. Flow in a two dimensional channel. 

channel centerline. Choosing b as the reference unit of length, the corresponding 
dimensionless distance becomes 

Yb = 7. (51) 

Let the kinematic shear stress at the wall be 

7 to= V*z (52) 

where v* is the so-called friction velocity. Without loss of generality, we can 
always choose reference units of time such that 

-rw = u*2 = 1. (53) 

The kinematic shear stress T varies linearly across the channel so that at any 
location 7 we have 

7 = 7). (54) 

According to our present notation, if U is the mean velocity at any 7, then 

auprj = IR (55) 

awp?f = Ical. (56) 
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We will take the van Karman velocity profile for this case as representative of 
experimental results: 

U = & (ln(1 - 1/G) + Gj). (57) 

Following the prescribed formulae, it may be shown that for this case A1 = 0. 
Actually, this is only true in the limit of infinite Reynolds number. For finite 
Reynolds number, there exists a small region near the wall (the Zuminar s&layer) 
in which the velocity protile is linear. In the region very near the wall, the actual 
velocity pro6le may be written (neglecting additive constants): 

u = X2,(1 - r)) for (1 - 7) <a 
= Q&l + ln( 1 - 77)) for 8 < (1 - 7j) < 1. 

(58) 

In this instance we find that 
A, = 2.586, (59) 

that is, h1 is of the same order of size as the thickness of the laminar sublayer. It is 
an interesting fact that, if & is taken as zero, we obtain 

&S = 512/P es AS, w9 

that is, our characteristic length is proportional to the classical von Karman mixing 
length. 

With the functions L& h, J, CL, #I, and y now known, we can proceed to solve the 
energy equation. The unsteady term and the convection term both vanish for the 
present case, so we obtain 

wherein the turbulent energy E is the only unknown. The appropriate boundary 
conditions are: 

aE/aq = 0 at q=o (62) 

E=O at 7) = 1. (63) 

The above equation for energy was expanded, expressed in finite-difference form, 
and integrated numerically using 100 stations equally spaced from 7 = 0 to ~7 = 1. 
The resulting turbulent energy distribution is shown in Fig. 3 as the solid line. It 
may be seen that the curve obtained in this way is in reasonably good agreement 
with the experimental data of Reichardt [5] and of Laufer [a]. 

Once the energy distribution is known, the dimensionless Reynolds stress may be 
computed from the relation 

-ii=uAfiEQ. 64 
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FIG. 3. Tudxdeat energy distrhtion in a two dimm$iOnaI 
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Except very near the wall, the above Reynolds stress should agree with the total 
shear stress defined by Eq. (54). 

In Fig. 4, the solid line shows the above heuristic estimate of the Reynolds stress, 
computed for a Reynolds number of 10,000. The dashed straight line represents 
the true total stress, which should agree closely with the Reynolds stress everywhere 
except in the immediate vicinity of the wall. The agreement is seen to be good; the 
computed results are on the whole more accurate than are Laufer’s experimental 
measurements shown on the figure. We conclude that this example tends to sub- 
stantiate the proposed heuristic model of turbulence, 

Now consider a free axi-symmetric turbulent jet discharging into a quiescent 
atmosphere as shown in Fig. 5. The radial and axial coordinates are r and z and the 
corresponding mean velocity components are U and V, respectively. 

Experimental results indicate that the velocity profiles of the mean flow at 
various cross-sections are self-similar. That is, if z is measured from a suitable 
virtual origin as shown, the stream function Y can be reduced to the form 

y = Wml), 

where 7 = (r/z) and where U, and b are constants of the jet. 
Consequently, the velocity components of the mean flow become 

(65) 

(67) 

where I;’ = (aF/$) z. (68) 

The known experimental results also indicate that the generalized velocity distribu- 
tion through the jet is very well approximated by the simple expression 

F’ - = f = ply 
rl 

where s is a characteristic constant for a turbulent jet and has the known value 
0.102. 

Furthermore, it is useful and convenient to adopt units of length and time such 
that when expressed in these units U, = 1 and b = 1. Hence, symbols like B, P, u, v, 
and so on will now represent .the corresponding dimensionless versions of kine- 
matic eddy viscosity, kinematic pressure, velocity components, and the like. 

The next step is to transform Eq. (7) (the momentum equation) into the z, 7) 
coordinate system defined above. The foregoing dimensionless functions Q and P 
may be introduced therein, and the results reduced. If the pressure gradients in the 
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FIG. 5. fi axi-synmetrk jet. 

jet are neglected (which experimental information indicates is a safe assumption), 
an equation for the distribution of E results: 

g+ 

[ 

(2-+)-(S-+)~+~ 
l = 

(1 - 2f) 

( 1 -- ,‘o +T)q 
I ( 1 f +$+’ -- 

(70) 
This equation may be readily integrated numerically. With the dimensionless 

eddy viscosity now known, it becomes a simple matter to find the corresponding 
dimensionless Reynolds shear stress: 

-uU = +w/a2 + avjar]. (71) 

Using equations (66) through (68) for the velocity components, we may then 
calculate the dimensionless shear stress numerically. It is shown as the dashed line 
in Fig. 7. 

To form the mean flow parameters required for the heuristic model, we note that, 
in cylindrical coordinates, 

and 

~2’ = 2 (-$)’ + 2 (z)” + 2 (+-)’ + [(s) + ($-)I’ (72) 

(Q&Y)* = ; [($y + (-g]. (73) 
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These, and all other quantities, may be non-dimensionalized in the manner 
described above, and the heuristic model applied. Numerical integration indicates 
that AI is roughly the same as S, the jet width parameter; this seems reasonable. A, 
(which we will take as A) remains nearly constant at about 0.1 across most of the 
jet and declines only slowly toward zero at relatively large distances from the center- 

x 

q 

X 

12 
0 

0 
0.00 , 

\ 0 

n 
0.00 005 aI0 a15 a20 

FIG. 6. Turbulent energy distribution in a circular jet. 
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FIG. 7. Reynolds shear stress distribution in a circular jet. 
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line. The energy equation may now be integrated numerically subject to the bound- 
ary conditions 

a.qaq = 0 at q=o (74) 

E-+0 as q-+co. (75) 

The boundary condition (75) at infinitely must be satisfied indirectly. Actually, 
the integration starts at the centerline using (74) and a trial value of E(0). A value 
of E(0) is found by iteration which yields E = 0 at some large value 7. In this 
regard the value 3 = 0.25 may be regarded as large. It is found that the precise 
position of the outer boundary makes virtually no difference in the results as long 
as it is greater than about 0.20. 

The energy distribution found in this way is shown by the solid line in Fig. 6. The 
agreement with the experimental results of Corrsin [7] and of Laurence [8] is 
satisfactory, especially in view of the degree of scatter in the data points. 

Once the energy distribution is known the eddy viscosity is fixed by Eq. (32) and 
the corresponding shear stresses by Eq. (71). These last are shown by the solid line 
in Fig. 7. The dashed line shows the corresponding shear stresses as computed 
from the momentum equation, as discussed earlier. Data points are from Corrsin 
PI- 

If the heuristic model were completely correct, and if the assumed Gaussian 
velocity profile were exact, then the two shear stress curves shown in Fig. 7 would 
coincide exactly. As it is, the degree of agreement attained is considered to be 
reasonably satisfactory. The discrepancy between the two curves is smaller than 
the discrepancy between the experimental points and either of the curves. It seems 
probable that in this instance the theoretically computed values are actually more 
accurate than the experimentally measured ones; the experimental measurement is 
innately difficult and uncertain. 

It may be concluded that, on the whole, these results for the turbulent jet sub- 
stantiate quite well the proposed heuristic model of fluid turbulence. 

C~~NCLUS~ONS AND RE~~MMJSNDATI~N~ 

It is concluded, on the basis of the evidence available so far, that the proposed 
heuristic model is basically adequate for determining the principal flow characteris- 
tics in the general case of inhomogeneous and nonstationary turbulence in in- 
compressible flow. 

It is resommended that the present model be applied also to other cases including 
pipe flow, two and three dimensional wakes, boundary layers, and to some exam- 
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ples of unsteady flow. The aim would be to reline the present unified theory and 
extend its range of applicability. 

It is also recommended that further experimental information be obtained in 
connection with those aspects of the model for which the present data are in- 
sufhcient. These aspects include, for example, 

(a) the relation between the local length scale h of the mean flow and the 
correlation length A* of the turbulence; 

(b) the generalized three dimensional stress/strain relations which actually 
exist in regions of strong anisotropy such as in the flow near a wall; and 

(c) the influence of various key parameters on the rate of dissipation of 
turbulent energy to heat. 
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